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Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing
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Whether these models can maintain good performance 
in real applications?
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1. Is there a simple TOOLKIT that can comprehensively
evaluate the robustness of existing models?

2. Is this robustness evaluation REASONABLE?

3. Is this phenomenon COMMON in real experiments?

4. How can we BENEFIT from the use of this toolkit?
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Unified Multilingual Robustness Evaluation Toolkit for
Natural Language Processing



1 TextFlint: Robustness Evaluation Toolkit

Integrity

TextFlint offers 20 general
transformations, 60 task-specific
transformations and thousands of
their combinations, and provides
over 67,000 evaluation results
generated by the transformation on
24 classic datasets from 12 tasks,
basically covers all aspects of text
transformations to comprehensively
evaluate the robustness of a model.
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Acceptability

Only when the new generated texts
conforms to human language, can
the robustness result obtained by
the verification be credible.
Transformation methods provided
by TextFlint are scored in plausibility
and grammaticality by human
evaluation. The results of human
and model evaluation can be found
on this website.

Analyzability

TextFlint can give a standard
analysis report from the lexics,
syntax, semantic levels. All
evaluation results can be displayed
with visualization and tabulation, so
that users can accurately grasp the
shortcomings of the model. More
evaluation results and related
analysis are in the paper.
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Transformation - General
Synonym

“He loves NLP” is transformed into “He likes NLP”

Spelling Error

definitely à difinately

Shanghai à Shenghai EntTypos
Typos

like à l1ke OCR

Antonym

John lives in Ireland à John doesn’t live in Ireland
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Transformation – Domain Specific

NER: SwapNamedEnt

“He was born in China” à “He was born in Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch”

CWS: SwapVerb

看à“看看,” “看一看,” “看了看,” and “看了一看.”

POS: SwapMultiPOS

“There is an apple on the desk” à
“There is an imponderable on the desk”
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https://www.textflint.io/demo
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Human Evaluation

• Plausibility (Lambert et al., 2010) measures whether the text is reasonable and written by native
speakers. Sentences or documents that are natural, appropriate, logically correct, and meaningful
in the context will receive a higher plausibility score. Texts that are logically or semantically
inconsistent or contain inappropriate vocabulary will receive a lower plausibility score.

• Grammaticality (Newmeyer, 1983) measures whether the text contains syntax errors. It refers to
the conformity of the text to the rules defined by the specific grammar of a language.
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Human Evaluation
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4 Text Modelling – Named Entity Recognition

Yan et al., A Unified Generative Framework for Various NER tasks, ACL 2021

Real Application

The different formulations make it hard to solve all NER tasks in a unified method
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Ma et al., SENT: Sentence-level Distant Relation Extraction via Negative Training, ACL 2021

4 Noisy Label in Distant Supervision

1. Given bag-level labels, can we obtain sentence-level labels?
2. Sentence bag contains correct labels, incorrect labels, and unincluded labels.
3. Previous positive learning framework cannot distinguish noisy data.

Important for
downstream tasks



4 Noisy Label in Distant Supervision

Comparison between positive and negative training

Ma et al., SENT: Sentence-level Distant Relation Extraction via Negative Training, ACL 2021
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Thanks for your attention!
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